Recent avian H5N1 viruses exhibit increased propensity for acquiring human receptor specificity.

نویسندگان

  • James Stevens
  • Ola Blixt
  • Li-Mei Chen
  • Ruben O Donis
  • James C Paulson
  • Ian A Wilson
چکیده

Adaptation of avian influenza viruses for replication and transmission in the human host is believed to require mutations in the hemagglutinin glycoprotein (HA) which enable binding to human alpha2-6 sialosides and concomitant reduction in affinity for avian alpha2-3 linked sialosides. Here, we show by glycan microarray analyses that the two mutations responsible for such specificity changes in 1957 H2N2 and 1968 H3N2 pandemic viruses, when inserted into recombinant HAs or intact viruses of some recent avian H5N1 isolates (clade 2.2), impart such attributes. This propensity to adapt to human receptors is primarily dependent on arginine at position 193 within the receptor-binding site, as well as loss of a vicinal glycosylation site. Widespread occurrence of these susceptible H5N1 clade 2.2 influenza strains has already occurred in Europe, the Middle East, and Africa. Thus, these avian strains should be considered high-risk, because of their significantly lower threshold for acquiring human receptor specificity and, therefore, warrant increased surveillance and further study.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced human receptor binding by H5 haemagglutinins

Mutant H5N1 influenza viruses have been isolated from humans that have increased human receptor avidity. We have compared the receptor binding properties of these mutants with those of wild-type viruses, and determined the structures of their haemagglutinins in complex with receptor analogues. Mutants from Vietnam bind tighter to human receptor by acquiring basic residues near the receptor bind...

متن کامل

Quantifying the effects of mutations on receptor binding specificity of influenza viruses

Hemagglutinin (HA) of influenza viruses is a cylindrically shaped homotrimer, where each monomer comprises two disulfide-linked subdomains HA1 and HA2. Influenza infection is initiated by binding of HA1 to its host cell receptors and followed by the fusion between viral and host endosomal membranes mediated by HA2. Human influenza viruses preferentially bind to sialic acid that is linked to gal...

متن کامل

Evolution of the receptor binding phenotype of influenza A (H5) viruses.

Receptor specificity of influenza A/H5 viruses including human 2003-04 isolates was studied. All but two isolates preserved high affinity to Sia2-3Gal (avian-like) receptors. However, two isolates (February, 2003, Hong Kong) demonstrated decreased affinity to Sia2-3Gal and moderate affinity to a Sia2-6Gal (human-like) receptors. These two viruses had a unique Ser227-Asn change in the hemaggluti...

متن کامل

Effect of receptor binding domain mutations on receptor binding and transmissibility of avian influenza H5N1 viruses.

Although H5N1 influenza viruses have been responsible for hundreds of human infections, these avian influenza viruses have not fully adapted to the human host. The lack of sustained transmission in humans may be due, in part, to their avian-like receptor preference. Here, we have introduced receptor binding domain mutations within the hemagglutinin (HA) gene of two H5N1 viruses and evaluated ch...

متن کامل

In vitro assessment of attachment pattern and replication efficiency of H5N1 influenza A viruses with altered receptor specificity.

The continuous circulation of the highly pathogenic avian influenza (HPAI) H5N1 virus has been a cause of great concern. The possibility of this virus acquiring specificity for the human influenza A virus receptor, alpha2,6-linked sialic acids (SA), and being able to transmit efficiently among humans is a constant threat to human health. Different studies have described amino acid substitutions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 381 5  شماره 

صفحات  -

تاریخ انتشار 2008